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Abstract: The regio- and stereochemistry of iodine-promoted transannular ring 
expansion of cyclic trans-l,2-epoxy-5(E)-ene systems is used to synthesise 
trans,syn,trans-substituted oxepanyl subunits, o 1997 Elsevier Science Ltd. 

Oxepane rings often occur in marine polyether toxins as partial structures of brevetoxins, ciguatoxins 

and related compounds, 2 which have a trans-fused ring system to other six- to nine-membered with two syn- 

substituents neighbouring to the oxygen atom of cyclic ethers. New methods for the stereoselective synthesis 

towards a ring such as 2 using highly functionalized glycosides (1) via ring opening of the oxane followed by 

recyclization to oxepanyl derivatives are receiving much attention 3 (Scheme 1). 
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Scheme 1 

As an alternative to this work, we have developed a methodology, using non-carbohydrate precursors, 

based on eleetrophilic intramolecular oxirane ring expansion of cyclic cis-epoxy alkenes followed by C--C 

bond fragmentation of the resulting bridged oxabicyclic systems. 4 This method allows, for instance, the 

synthesis of the meso-Cs-trans-syn-trans oxepanyl subunit 3. 5 The efficiency of the synthesis of the optically 

pure monoacetates 4 and 54 makes this compound an interesting starting point for the synthesis of trans-fused 

polyether targets including ciguatoxin and related substances. ~ As an extension of this methodology including 
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trans-epoxy derivatives, epoxide 6 was submitted to oxirane ring expansion by treatment with I2/CH2Cl2/cat. 

Ti(iPrO4) to give a 1:3 mixture of expanded diiodo oxacycles 7 and 8 in 95% yield (Scheme 2). 
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Silver ion-induced solvolysis of the mixture 7 and 8 (AgOAc / CHCI3:AcOH (4:1) / 40-45 °C / 24 h) 

gave a mixture of diacetates 9, 10 and 11 in a 1.5 : 0.5 : 1 ratio (88% yield). 6 The structures ofmeso diacetates 

10 and 11 were conf'u'med by X-ray crystallographic analysis. 7"8 Compound 11 possesses the required 

oxygenated pattern and was converted via the diallylstannane 12 to the meso oxatricyclic (7 : 7 : 7) system 13 

(51% yield from 9), 9 following a sequence of reactions similar to that previously reported by us for the 

synthesis of its (8 : 6 : 7) homologue, a 
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For the construction of functionalized oxepanyl systems, the pairs of epoxy alkenols 17, 18 and 20, 21 

were synthesized (Scheme 3). Isomerization of the readily available cis-alkenol 144 to the trans-isomer 16 was 

achieved via epoxide 15 following the Wharton procedure I° (67% overall yield). Allylic epoxidation of 16 

with t-BuOOH / Ti(iprO)4 / (+) DET / CH2C12 / -20 °C gave a 1:1 mixture of diastereomers 17 and 18. The 

structures of both epoxy alcohols were proven by X-ray crystallographic analysis, l LS Conversion of epoxide 6 
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to the trans-alkenol 19 can be clearly accomplished with LDA as base. |2 Allylic epoxidation of 19 under the 

above-mentioned conditions gave a 3:1 mixture of epoxyalkenols 20 and 21 whose structures were determined 

by X-ray analysis.13's 

The epoxidcs 17, 18, 20 and 21 appear to serve as promising templates for stercoselective electrophilic 

expansions of the oxiranc ring leading to cyclododccane-containing target molecules with multiple 

functionality and the possibility to be further converted into trans, syn-substituted oxacyclic systems. Two 

examples are recorded in Scheme 4: Iodine-induced ring expansion of the epoxy-alcohols 18 (erythro) and 20 

(threo) led to smooth conversion to diiodidcs 22 and 24 (93% and 96% yields, respectively). Treatment of 22 

with AgOAc in rcfluxing dioxane-AcOH (20:I) gave a complex mixture of deiodinated compounds (68% 

yield) from which diacetate 2314 was isolated as the major component (18% yield). The reaction was 

complicated by partial migration of the acyl groups. Silver (1)-assisted solvolysis of the diiodoalcohol 24 with 

AgOAc in AcOH:CHCI3 (2: I) underwent instant reaction to give 25 L~ in 89% yield. 
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Scheme 4 

Work is underway in our laboratories to convert the new epoxyalkenols described here to a variety of 

ortho-condensed oxepanyl systems. The mild conditions and high yields associated with the general reaction 

conditions make this an attractive method for the construction of trans-fused polyethers. 
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